3. Ü. Özgür et al., “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., vol. 98,

pp. 041301/1–041301/103, 2005, doi: 10.1063/1.1992666

4. K. Momma, F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric

and morphology data”, Journal of Applied Crystallography, vol. 44. pp. 1272–1276, 2011.

5. S.-H. Wei, A. Zunger, “Role of metal d states in II-VI semiconductors”, Phys. Rev. B, vol. 37,

no 15, p. 8958, 1988.

6. J. Jian, J. Sun, “A review of recent Progress on silicon carbide for photoelectrochemical water

splitting”, Sol. RRL, vol. 4, pp. 2000111/1–2000111/10, 2020, doi: 10.1002/solr.202000111

7. M.A. Fraga, H. Furlan, R.S. Pessoa, M. Massi, “Wide bandgap semiconductor thin films for

piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview”,

Microsyst. Technol., vol. 20, no 1, pp. 9–21, 2014, doi: 10.1007/s00542-013-2029-z

8. Q. Hua, B. Ma, W. Hu, “Aluminum, gallium, and indium Nitrides”, in Encyclopedia of

Materials: Technical Ceramics and Glasses, M. Pomeroy, Org. Elsevier, 2020, pp. 1–10.

9. M. Isshiki, J. Wang, “Wide-bandgap II-VI semiconductors: Growth and properties”, in

Springer Handbook of Electronic and Photonic Materials, S. Kasap,

P. Capper, 2017,

pp. 365–383.

10. M.N. Yoder, “Wide bandgap semiconductor materials and devices”, IEEE Trans. Electron

Devices, vol. 43, no 10, pp. 1633–1636, 1996, doi: 10.1109/16.536807

11. R. Williams, “High electric fields in CdS”, J. Phys. Chem. Solids, vol. 22, pp. 129–133, 1961.

12. S. Kasap, P. Capper, Electronic and Photonic Materials, 2nd Edition. Cham, Switzerland: Springer

Nature, 2017.

13. S.N. Mohammad, H. Morkoç, “Progress and prospects of group-III semiconductors”, Prog.

Quantum Electron., vol. 20, no 5–6, pp. 361–525, 1996.

14. A.R. Acharya, “Group III – nitride semiconductors: Preeminent materials for modern elec­

tronic and optoelectronic applications”, Himal. Phys., vol. 4, no 4, pp. 22–26, 2013.

15. D. Feezell, S. Nakamura, “Nonpolar and semipolar group III-nitride lasers”, inSemiconductor

lasers: Fundamentals and applications, Woodhead Publishing Limited, 2013, pp. 221–271.

16. B.N. Pushpakaran, A.S. Subburaj, S.B. Bayne, J. Mookken, “Impact of silicon carbide semi­

conductor technology in photovoltaic energy system”, Renew. Sustain. Energy Rev., vol. 55,

pp. 971–989, 2016, doi: 10.1016/j.rser.2015.10.161

17. H. Morkoç and I.-V. Z. semiconductor device technologies Strite, SLarge-band-gap SiC, III–V

nitride, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, “Large-band-gap SiC, III-V nitride, and II–VI

ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol. 76, pp. 1363–1398, 1994,

doi: 10.1063/1.358463

18. V. Cimalla, J. Pezoldt, O. Ambacher, “Group III nitride and SiC based MEMS and NEMS:

Materials properties, technology and applications”, J. Phys. D. Appl. Phys., vol. 40, no 20,

pp. 6386–6434, 2007, doi: 10.1088/0022-3727/40/20/S19

19. F. Bernardini, “Spontaneous and piezoelectric polarization: Basic theory vs. practical re­

cipes”, in Nitride Semiconductor Devices: Principles and Simulation, Piprek J., 2007, pp. 49–68.

20. J. Miao, B. Liu, “II-VI semiconductor nanowires: ZnO”, in Semiconductor Nanowires, J. Arbiol,

Q. Xiong, no 2, Elsevier, 2015, pp. 3–28.

21. H.P. Phan et al., “Long-lived, transferred crystalline silicon carbide nanomembranes

for implantable flexible electronics”, ACS Nano, vol. 13, no 10, pp. 11572–11581, 2019, doi:

10.1021/acsnano.9b05168

22. X. Li, X. Liu, “Group III nitride nanomaterials for biosensing”, Nanoscale, vol. 9, pp. 7320–7341,

2017, doi: 10.1039/c7nr01577a

23. T.A. Pham et al., “Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward

the next generation of nanoelectromechanical systems for environmental monitoring”, Adv.

Sci., vol. 7, no 21, pp. 1–30, 2020, doi: 10.1002/advs.202001294

24. N. Koteeswara Reddy, M. Devika, C.W. Tu, “Vertically aligned ZnO nanorods on flexible

substrates for multifunctional device applications: Easy and cost-effective route”, Mater. Lett.,

vol. 120, pp. 62–64, 2014, doi: 10.1016/j.matlet.2014.01.029

218

Bioelectronics